The Szemerédi-Trotter Theorem Incidences between Points and Lines

Ladia Khaing and Ada Kilian
Mentor: Paige Bright

May 19, 2024

Setup: Points and Lines

Suppose we are given n points, P, and m lines, \mathcal{L}.

Here, $n=6, m=5$, and notice that there are 7 pairs of points and lines, (p, ℓ), such that the point p lies on ℓ. Such pairs are known as incidences.

Setup: Incidences

Question

Suppose we are given n points, P, and m lines, \mathcal{L}, in Euclidean space. How large can the following be:

$$
\mathcal{I}(P, \mathcal{L}):=\#\{(p, \ell) \in P \times \mathcal{L}: p \in \ell\} ?
$$

Remark: We suppose without loss of generality that every line contains at least one point.

Incidences: Known Bounds

Question

Suppose we are given n points, P, and m lines, \mathcal{L}, in Euclidean space. How large can the following be:

$$
\mathcal{I}(P, \mathcal{L}):=\#\{(p, \ell) \in P \times \mathcal{L}: p \in \ell\} ?
$$

There are a few key bounds we can know.

- Trivial bound: $\mathcal{I}(P, \mathcal{L}) \leq n m$.
- Cauchy-Schwarz: $\mathcal{I}(P, \mathcal{L}) \leq \sqrt{n}\left(n m+m^{2}\right)^{1 / 2}$
- Szemerédi-Trotter: $\mathcal{I}(P, \mathcal{L}) \leq C\left(n^{2 / 3} m^{2 / 3}+n+m\right)$

We will spend this presentation outlining one way to prove the Szemerédi-Trotter bound.

Outline

1. From Points and Lines to a Graph

2. Graph Theory

2.1 Euler's Planar Graph Theorem
2.2 The Crossing Number Lemma
3. Proving Szemerédi-Trotter

From Points and Lines to a Graph

We transform our points P and our lines \mathcal{L} into a graph $G=(V, E)$.

- We let our points P become our vertices V (i.e. $|V|=n$), and
- An edge between p_{i} and p_{j} is formed if p_{i} and p_{j} are on a common line $\ell \in \mathcal{L}$ and the points p_{i} and p_{j} are adjacent on ℓ.

Graph G

Counting Edges

Lemma

Let $G=(V, E)$ be the graph obtained from the previous slide on n points and m lines. Then, $|E|=\mathcal{I}(P, \mathcal{L})-m$.

Proof: We follow by induction on m. If there is one line, ℓ_{1}, then notice that the number of edges is always one less than the number of incidences.

In the above, we have $|E|=4, \mathcal{I}\left(P, \ell_{1}\right)=5$, and $m=1$.

$|E|=\mathcal{I}(P, \mathcal{L})-m$ ctd.

We now assume the proposition holds for m lines, and show it holds for $m+1$ lines.

From the first m lines we obtain $\mathcal{I}\left(P, \mathcal{L} \backslash \ell_{m+1}\right)-m$ many edges, and from the new (orange) line we obtain $\mathcal{I}\left(P, \ell_{m+1}\right)-1$ many edges from the base case. Hence, $|E|=\mathcal{I}(P, \mathcal{L})-(m+1)$.

Developing Graph Theory

At this point, we have turned our set of n points and m lines into a graph $G=(V, E)$. In particular, we know

$$
|V|=n \quad \text { and } \quad|E|=\mathcal{I}(P, \mathcal{L})-m .
$$

We will develop some graph theory to give us inequalities relating $|V|$ and $|E|$ to one another.

Graph Theory: Planar

Definition (Planar)

A graph G is planar if we can draw G such that edges only intersect at their endpoints (i.e. no edges cross each other).

Planar

Non-planar

Graph Theory: Connected

Definition (Connected)

A graph G is connected if, for each pair of vertices, there at least one path which joins them.

Graph Theory: Faces

Definition (Face)

A face in a planar graph G is a region bounded by a set of edges and vertices in the embedding.

2 faces

5 faces

Euler's Theorem

Theorem (Euler's Theorem)

Let G be a planar connected graph. Then,

$$
V(G)-E(G)+F(G)=2
$$

Proof Outline: We do induction on $E(G)$.

- Base Case: $E(G)=1$: There are only two possibilities.
- Inductive Step: Assume true for $E(G)=k$ and prove true for $E(G)=k+1$.
- If possible: remove one edge and use inductive hypothesis.
- Otherwise, G is a "tree" and we can prove this directly for trees.

Euler's Theorem ctd.

More generally,

Theorem

Let G be a planar graph. Then,

$$
V(G)-E(G)+F(G)=k(G)+1
$$

where $k(G)$ is the number of connected components of G.

Graph Inequalities

Lemma

If G is planar, then $|E|-3|V| \leq 0$.
Proof: From Euler's theorem:

$$
V-E+F \geq 0
$$

Furthermore, $F \leq \frac{2}{3} E$. Combining these and rearranging the inequality gives the desired result.

As we cannot guarantee a planar graph, we must obtain a more general result relating edges and vertices, which can be done once we define crossing numbers.

Crossing Number $\operatorname{cr}(G)$

Definition (Crossing Number)

Given a graph G, we define $\operatorname{cr}(G)$ to be the minimum number of edge crossings achievable when laying out G in the 2D plane.

For example: G is planar if and only if $\operatorname{cr}(G)=0$.

Graph Inequalities ctd.

Lemma

If G is a graph, then

$$
|E|-3|V| \leq c r(G)
$$

Proof: If $\operatorname{cr}(G)=0$ then G is planar and we already proved the result. Otherwise, we remove edges to make G planar.

Hence,

$$
\left|E^{\prime}\right|-3\left|V^{\prime}\right| \leq 0 \Longrightarrow(|E|-c r(G))-3|V| \leq 0 .
$$

The Crossing Number Lemma

As it turns out, the previous inequality is not as good as we need for the proof of Szemerédi-Trotter. But, one can use probability to improve the inequality, and obtain the following result.

Lemma (Crossing Number Lemma)
Let $G=(V, E)$ be a graph with $|E| \geq 4|V|$. Then,

$$
\operatorname{cr}(G) \geq \frac{|E|^{3}}{64|V|^{2}}
$$

Proving Szemerédi-Trotter

Recall that we have taken our n points and m lines and turned it into a graph $G=(V, E)$ such that

$$
|V|=n \quad \text { and } \quad|E|=\mathcal{I}(P, \mathcal{L})-m
$$

Furthermore, recall that we want to prove

$$
\text { Szemerédi-Trotter : } \mathcal{I}(P, \mathcal{L}) \leq C\left(n^{2 / 3} m^{2 / 3}+n+m\right)
$$

We break into cases based on the Crossing Number Lemma.
Case 1: $|E|<4|V|$. Then,

$$
\mathcal{I}(P, \mathcal{L})=|E|+m<4 n+m
$$

Proving Szemerédi-Trotter ctd.

Case 2: $|E| \geq 4|V|$. Then, by the Crossing Number Lemma,

$$
\frac{|E|^{3}}{64|V|^{2}} \leq \operatorname{cr}(G)
$$

By construction, $\operatorname{cr}(G) \leq m^{2}$.
Rearranging and plugging in $|E|$ and $|V|$, we see

$$
\mathcal{I}(P, \mathcal{L}) \leq 4 n^{2 / 3} m^{2 / 3}+m
$$

Adding these two cases together, we obtain

$$
\mathcal{I}(P, \mathcal{L}) \leq 4\left(n^{2 / 3} m^{2 / 3}+n+m\right)
$$

Citations

We used the following texts in our studies:
(1) Miklós Bóna: A Walk Through Combinatorics
(2) Larry Guth: The Polynomial Method: Lecture Notes
(3) Alex losevich: A View From the Top

Thank you for listening!

Any Questions?

